O-MAP Round 3 and the Future of OAETG

Mike Aurilio, MASc, EIT

Terminal Manager, Yellowline Asphalt Products Ltd.

The Idea

High RAP Literature Review

Development of O-MAP R3 Refinement and Further Research

The Concepts

- Toda's big concepts:
 - Ontario needs to understand what design changes will be most effective for our materials
 - We need to understand how to incorporate RAP effectively
 - We need to understand how to use performance tests to modify performance
 - Looking at mix design changes that increase effective binder content
- Today's side concepts:
 - Understanding impact of cutting samples after fabrication on variability

New Jersey Experience

- Surface: 20% Minimum
- Base/Intermediate: 30% Minimum
- Lead to 1% VMA increase in specification
- Air Voids Controlled between 95 and 98.5% during production
- Specification based on virgin mixes

	Requirement						
	Surface	Course	Intermediate Course				
Test	PG 64-22 PG 76-22		PG 64-22	PG 76-22			
APA @ 8,000 loading cycles (AASHTO T 340)	< 7 mm	< 4 mm	< 7 mm	< 4 mm			
Overlay Tester (NJDOT B-10)	> 150 cycles	> 175 cycles	> 100 cycles	> 125 cycles			

New Jersey Experience

- First trial: 2012 on Interstate 295
- Final mix had 25% in surface, 35% in intermediate
- Binder selection left to whatever was most appropriate for performance
- No issues with compaction, IRI and density measurements confirmed this

Descents	I295 Final HRAP Mixtures						
Property	9.5M76 (Surface Course)	12.5M64 (Intermed. Course					
RAP % Used	25%	35%					
JMF Asphalt Content (%)	6.0%	5.8%					
% Binder Replacement	27.4%	29.7%					
PG Grade of Virgin Binder	PG70-22	PG64-28					
(Continuous Grade)	(74.6-26.99)	(64.8-28.29)					
Fractionated RAP Portion	100% Eine RAD Exection	50% Fine RAP Fraction					
Used	100% File KAP Fraction	50% Coarse RAP Fraction					

Georgia Experience

- Began investigating performance issues in 2012
 - Implemented multiple changes including reduced gyrations, finer gradations, performance testing on specialty mixes
- Corrected Optimum Asphalt Content:
 - 60:40 currently in specification
 - Essentially treats RAP as only contributing 60% of binder

If ranges in asphalt content and gradation are equal to or less than:									
% asphalt cement	<u><</u> 0.65	0.66 - 0.90	0.91 - 1.00	1.01 - 1.20	1.21 - 1.30	> 1.30			
% passing No 200 Sieve	<u>≤</u> 5.0	5.1 - 7.0	7.1 - 7.75	7.76 - 8.0	8.1 - 8.8	> 8.8			
% passing control									
sieves	<u><</u> 8.0	8.1 - 13	13.1 - 18	13.1 - 18	18.1 - 20.0	> 20.0			
	the maximum % RAP allowed is:								
	Max 35% 30% 25% 20% 15%								

The Materials

- Mix Type: SP 12.5 FC2
 - AC Content: 5.2%
- PG Grade: 74.0-33.6
- RAP Grade: 85.2-18.8

Original Mix

- GRADATION PERCENT PASSING JOB MIX FORMULA Air Voids 3.2% 0.075 2.36 0.300 0.150 AC% Sieves 50.0 37.5 25.0 19.0 16.0 12.5 9.5 4.75 1.18 0.600 100.0 7.5 5.3 VMA- 15.3% 5.2 JMF 100.0 100.0 100.0 100.0 97.3 81.4 51.8 41.8 28.4 18.4 11.8

Adjusted Mix

JOB MIX FORMULA - GRADATION PERCENT PASSING

AC%	Sieves	50.0	37.5	25.0	19.0	16.0	12.5	9.5	4.75	2.36	1.18	0.600	0.300	0.150	0.075
5.2	JMF	100.0	100.0	100.0	100.0	100.0	97.4	82.0	52.4	41.0	27.9	18.3	12.1	8.0	5.8

Air Voids 4.1% VMA- 16.2%

The Details

- Benchmarking:
 - Use round robin testing to establish performance benchmark
 - SCB vs IDEAL CT
- Increase Design VMA
- Lower Design Gyrations
- 60:40 COAC

Increase effective binder content

- 25% RAP Content
 - Higher "safe/comfortable" concentration
 - Higher than threshold where softer binder should be used

The Timeline

Stage 1 (~6-8 weeks):

- 1. Material Collection (1 week)
- 2. One Point Design Check of Reference Mix (3 weeks)
- 3. Performance Testing of Reference Mix (2 weeks)
- 4. Oversite Team Data Analysis (2 weeks)

Stage 2A- Mix 4 and 6 (~3-4 Weeks)

- 1. Redesign of mix using designated design change (1-2 weeks)
- 2. Performance testing of new mixes (2 weeks)

Stage 2B- Mix 3, 5 and 7 (~3-4 Weeks)

- 1. Redesign of mix using designated design change (1-2 weeks)
- 2. Performance testing of new mixes (2 weeks)

Stage 1 Participants

	Mix - 1	Mix - 1						
	Lab ID	HWT	SCB	DCT	Ideal CT			
	Α	1	1					
	В			1				
	С	1	1					
	D	1	1	1	1			
	E		1					
	F	1	1	1	1			
	G	1	1					
	Н	1	1	1				
This one is me 💻	J	1	1	1				
	К	1			1			
	L		1					
	M				1			
	N	1	1	1	1			
		9	10	6	5			
		4	2	2	3			
		36	20	12	15			

What else should we explore?

Finer Mixes

• Bonus: Reduces permeability of mix, reduces long-term oxidation

RAP Gradation Requirements

• RAP particle size impacts available binder

Softening/Recycling Agents:

• Used to increase RAP content successfully by several DOTs

Where do we go next?

Provincial System?

- Low volume roads?
- Adoption for smaller municipalities?
- Impact of traffic on thresholds?

Sustainability?

- RAP usage, RAS usage?
- Pavement longevity

FOR ANY INQUIRIES ABOUT OAPC, PLEASE E-MAIL: INFO@ONASPHALT.ORG VISIT OUR REFRESHED WEBSITE TO LEARN MORE: <u>WWW.ONASPHALT.ORG</u>