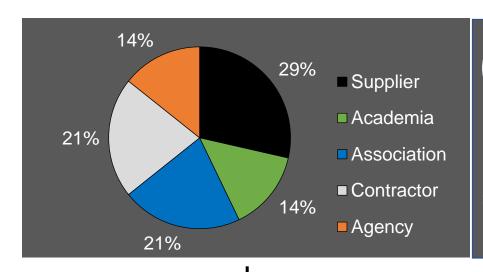
4-YEARS OF OAETG A PERFORMANCE REVIEW

Sina Varamini, Ph.D., P.Eng., MCSCE Chair – Ontario Asphalt Expert Task Group (OAETG) General Manager – Canada (CRM)

Presentation Prepared for Asphalt Technical Symposium (ATS)
June 11, 2024



OAETG

Open to all industry stakeholders

Chair: **Sina Varamini**, Ph.D., P.Eng., MCSCE General Manager, CRM/Adjunct Professor

Secretary: **Selena Lavorato**, B. Sc., C.E.T. QS Manager at Green Infrastructure Partners

National-Level Access to Academic Research Groups

Regional
User
— · — Producer
Groups &
Associations

OAETG OBJECTIVES

OUR MANDATE I-ABC **Identify** improvements to binder and mixture specifications and testing methods *Ontario-specific climate and traffic conditions*

Act as an advisory group

Recommending and/or perform asphalt research interests and needs

Brainstorm asphalt-related and emerging issues

Particularly on subjects of RAC and Mix Performance acceptance

Contribute to content development and organization of the Asphalt Technical Symposium (ATS)

OAETG APPROACH TO I-ABC

Ability to recommend & advise on contract spec development and contract language

BRIDGING
KNOWLEDGE GAP in
"Performance Testing"

Ex. High RAP Project Lit. Review

Short-Term
Project;
Volunteer-led
by OAETG
Members

Literature Search on PRACTICE-READY performance thresholds

Req's Industry-Wide Exchange Program (Part of 5-Year Vision)

WHY FOCUS ON PERFORMANCE TESTING?

Barber Asphalt Paving Company

Mix of AC with Sand and Pulverized carbonite Lime

Hubbard-Field Method

Sand asphalt design 30 blow, 6" diameter with compression test

Bruce Marshall (Mississippi DOT)

Refined Hubbard Field Method – standardization of compaction energy with drop hammer Used only air voids (3 to 5%) VFA and VMA added in 1962 Stability and flow utilized

1890

1905

1920s

1927

1943

1993

NOW?

Clifford Richardson, New York Testing Company

Surface Sand Mix Asphalt mix for lower layers VMA terminology used

Francis Hveem (Caltrans)

Surface Area factors to determine binder content (Hveem stabilometer and cohesionmeter)

Air voids not used initially, mixes generally drier relative to others

Issues with fatigue cracking

Superpave

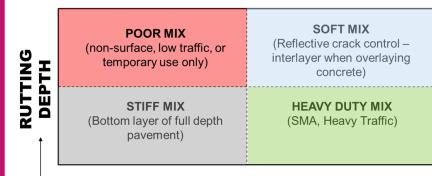
- Level 1 (volumetric-based approach) using 4% air voids, VFA, VMA, DP
- Introduction of gyratory compactor
- Level 2 (performance-based approach) Never
 implemented

First Canadian trials in mid1990s

Performance Testing and Specification Inclusion – A Journey We Must Travel

- A Recipe & Volumetric Selection
- **B** Performance-Verified Volumetric Design

Verification of resistant to a specific distress Example: Asphalt Cement (AC) modification to resist fatigue cracking


C Performance-Modified Volumetric Design

Adjustment of mix proportions to resist a specific distress Example: AV & VMA changes to resist fatigue cracking.

D Performance-Based Design

Durability
Performance testing for **Pavement design input Conduct volumetric for QA**

Mix Durability

→ CRACKING RESISTANCE

OATEG 5-YEAR VISION

BLD

Bridge the knowledge gap in "Performance Testing methods and Acceptance"

Literature search on **practice-ready** "mix performance" thresholds

Develop a framework to execute industry-wide Mix Asphalt Program (MAP)

2021 2022 2023 2024 2025 2026

OAETG
MIX
ASPHALT
PROGRAM
(O-MAP)

Two (2) rounds completed – Round 3 in progress

ORBA/OAPC Budget & In-Kind Contributions from members

Understanding Variability/Risk

Inherent variability within test method – test variability Interlaboratory variability
Variability due to sampling and fabrications methods

Multiple labs
Plant-Produced Lab Fabricated Samples (first two rounds)

Test Methods Used in O-MAP Round 1&2

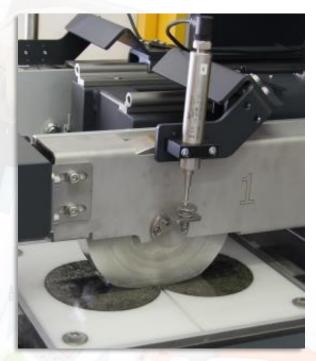
RUTTING

TRACK
AASHTO T 342

FATIGUE

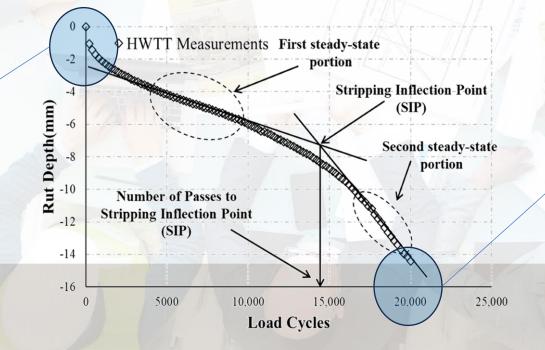
SCB CRACKING RESISTANCE (I-FIT) AASHTO T 393

THERMAL CRACKING



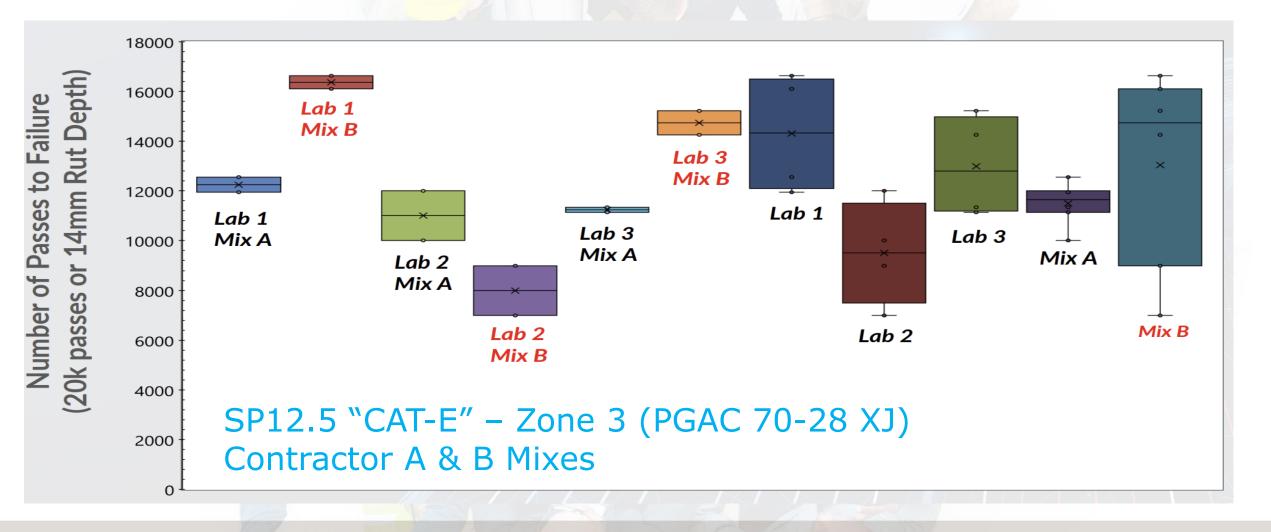
DISCK-SHAPED COMPACT TENSION ASTM D7313-13

HAMBURG WHEEL TRACK

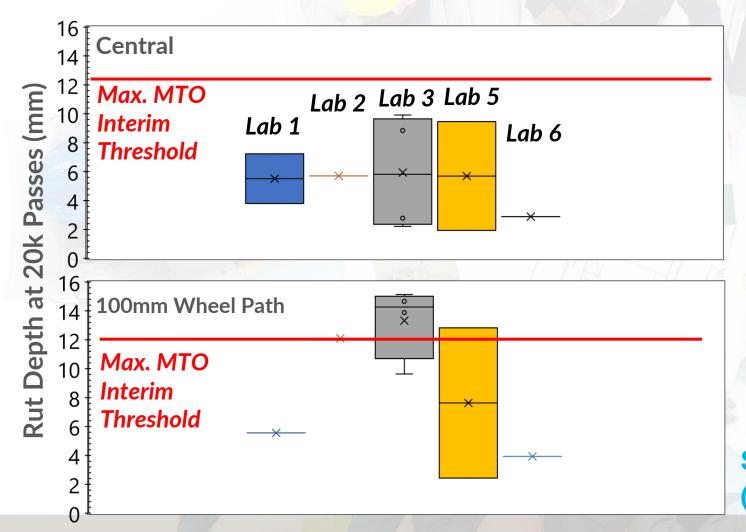

AASHTO T 342

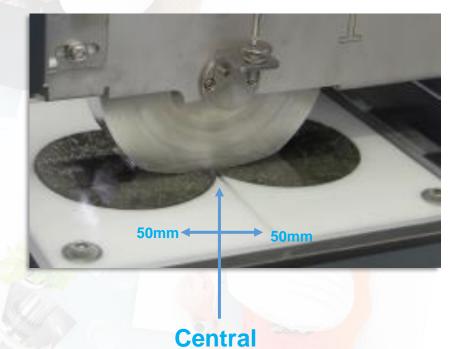
Tracking 705 N of load wheel for 20,000 passes
Submerged at varying high temperature
Softer and harder binders tested at 44°C and 50°C

BEFORE



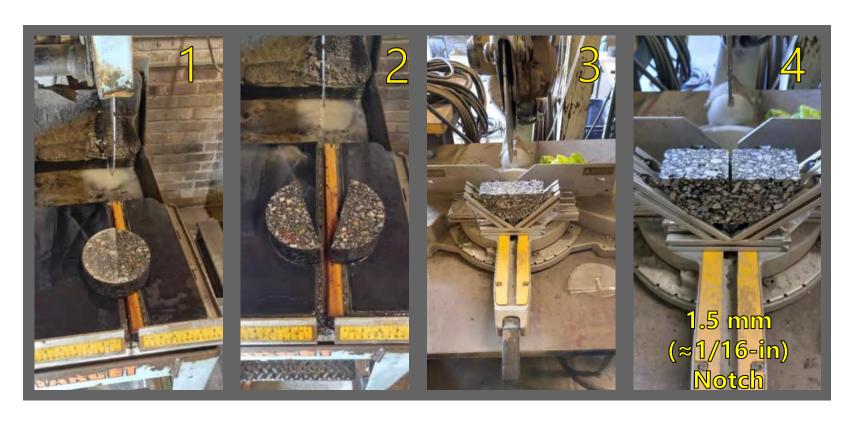
HWT - Round 1 Results





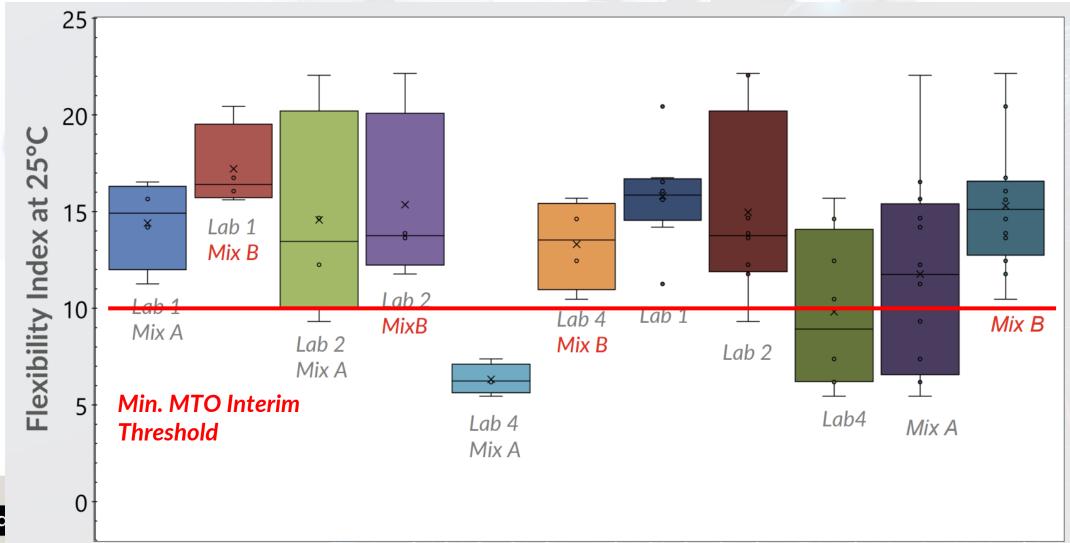
HWT - Round 2 Results

SP12.5 "CAT-D" – Zone 3 (**PGAC 70-28 XJ**)

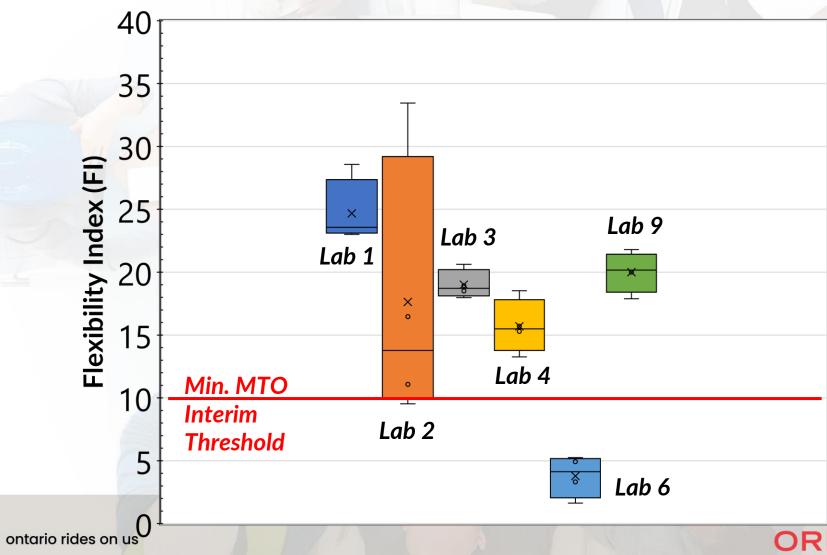


SCB FATIGUE CRACKING RESISTANCE (I-FIT)

AASHTO T 393


Gyratory-sized (H 50mm X D 150mm)

Performed at 25°C or lower



O-MAP Round 1 SCB RESULTS

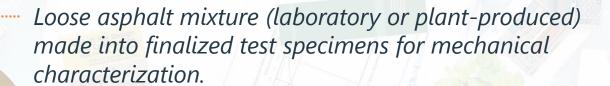
O-MAP Round 2 SCB RESULTS

Semi-Circular Bend Test (Flexibility Index)

What is the most influencing Parameters?

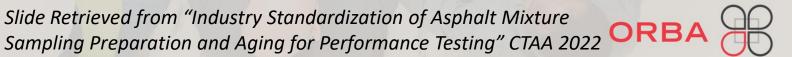
- 1. Hydraulic Loading
- 2. Housed Environmental Chamber

- 1. Screw-Driven Loading
- 2. External Environmental Chamber

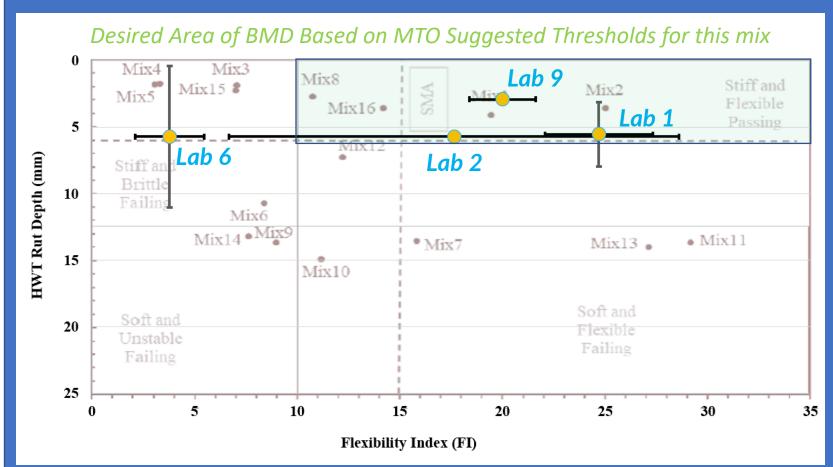


Let's Rethink...

STANDARD (AASHTO, or ASTM) to conduct performance tests


MINIMAL GUIDANCE to consistently fabricate laboratory specimens (i.e.: aging conditions and acceptance criteria) given lab can have unique way of sample prep..

Reheating, compaction, conditioning, cutting/ notching, air void determination, etc.


Studies have shown that different specimen **fabrication methods** can significantly **affect** measured performance properties, which will impact design, evaluation, and acceptance of asphalt mixtures

EFFECT OF VARIABILITY ON "BALANCE MIX DEISGN" OUTCOME PERFORMANCE SPACE DIAGRAM (PSD)

Results superimposed over **Performance Space Diagram (PSD)** retrieved from: *Bashir I, Salehi-Ashani S, Ahmed D, Tabib S, Vasiliu G. "MTO's Experience with Post-Production Asphalt Mixture Performance Testing".*Proceedings, Canadian Technical Asphalt Association, 65. 316-344 (2020).

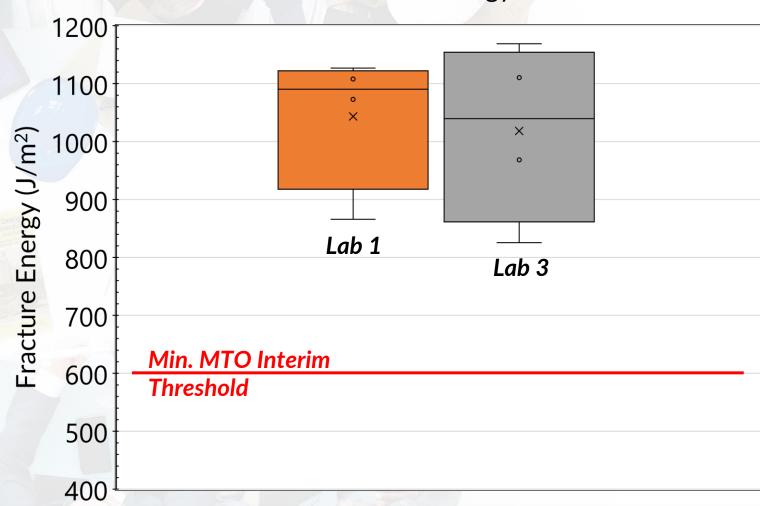
Mixes Studied By MTO

Mix No.	Mix Type ¹	%RAP ² Content	Specified PGAC ³	Traffic Category	
1	SMA 12.5	-	70-28	E	Ť
2	SMA 12.5	-	70-28	E	T
3	SP12.5 FC2	-	70-28	E	T
4	SP12.5 FC2	20	70-28	E	Ī
5	SP12.5 FC2	20	70-28	E	T
6	SP12.5 FC2	20	64-28	С	T
7	SP12.5 FC2	20	64-34	D	T
8	SP12.5 FC2	-	64-34	E	T
9	SP12.5 FC2	-	58-28	D	T
10	SP12.5 FC2	-	58-28	D	T
11	SP12.5 FC1	-	58-34	D	T
12	SP12.5 FC1	-	58-34	D	T
13	SP12.5	-	58-34	С	T
14	SP12.5	-	52-40	В	T
15	SP12.5	-	52-40	В	T
16	SP12.5	-	52-40	С	T

Error bars represent one standard deviation from the average value of four replicates tested per mix ($\approx 68\%$ reliability)

Disk-Shape Compact Tension Test (DC(T))

TEST INFO


SG compacted
160mm+ thickness and then cut into
50mm disks
Tested at 10°C above PG -YY

MIX ASPHALT PROGRAM (MAP)

FINDINGS

Mix Properties

Mix properties do play a role in performance, especially during fabrication of HWT thinner briquets

Procedures and Instructions

Controlling consistency needed – **CCIL** or MTO technician certification required Sample Fabrication and Testing Instructions (**SFTIs**) requires specifics on **sample** heating, splitting, compaction temp. tolerances and cutting

Collaboration

MTO and other agencies must collaborate with academia and industry to research sources of variability....Minimizing risk to all parties involved.

Thresholds still need to be evaluated for their practicality

Certified Technician Training Program

Agencies and industry need to establish hands-on technician certification training courses... through Good Roads, ORBA Academy, or Local Universities

PERFORMANCE INCLUSION CHECKLIST Enhancing our understanding, while being practical

- 1. Benchmark mix performance.
- 2. Understand the thresholds **specific** to your local climate and roads.
- 3. Collect at least 2 years of "information only" testing data as part of the mix design submission.
- 4. Understand the efforts required in the coarse and fine-tuning phases of threshold settings.
- 5. Request a performance-verified mix design submission.
- **6. Control** the performance throughout the contract using **traditional quality assurance** measures (e.g., gradation and AC%).
- 7. Conduct performance testing on plant-produced, field-retained, and field-compacted samples only **IF FORENSIC** analysis is required. Include control sections in your DOE for **further root cause** analysis.

Last Few Words.... WE NEED PERFORMANCE-BASE DESIGN SUBMISSIONS FOR DECARBONIZED FUTURE

Focusing on EPDs considering Low-Carbon Life Cycle Analysis (LCA) & Buy-Clean Policies

Performance
Testing
to ensure
durability

Knowledge Sharing is Empowering

Sharing Knowledge and findings of O-MAP with other user producer associations:

- 1. Nova Scotia User Producer Association
- 2. New Brunswick User Producer Association
- 3. Good Roads (formerly OGRA)
- 4. CTAA's CUPGA
- 5. Transportation Association of Canada (TAC) Soils & Materials Committee & Pavements Committee

OAETG PUBLICATION CONTRIBUTATIONS

Ambaiowei, D., Varamini, S., Aurilio, M., Almardy, Y., <u>Toward Performance-Based Acceptance of Asphalt Mixtures in Ontario: Industry (O-MAP) Preliminary Findings</u>. *Transportation Association of Canada*, 2023

Ambaiowei, D., Varamini, S., Tavassoti, P., Lavarato, S., Almardy, Y., <u>Lessons Learned from Ontario-Mix Asphalt Program (O-MAP) – A Critical Look at Hamburg Wheel Tracking Test, Proceedings of the Canadian Technical Asphalt Association Annual Conference, 2023</u>

Tavassoti, P., Wakefield, A., Sanchez, X., Varamini, S. <u>Performance Evaluation of In-situ and Laboratory Prepared Asphalt Materials: Practical Considerations for Sample Preparation and Testing Methodology</u>, *Transportation Association of Canada*, 2022

QUESTIONS

General Manager – Canada (CRM)

