Development of a Framework to Evaluate Asphalt Properties in Plant Produced Asphalt Mixes

Amma Wakefield, PhD Candidate, PEng Supervisor: Prof. Susan L. Tighe, PhD, PEng

PRESENTATION OUTLINE

- WHY: Background & Research Gaps
- WHAT: Research Objectives
- HOW: Sampling & Testing
- WHEN: Timeline and Current Status
- WHO: Acknowledgements

п

1990s to 2000s: SUPERPAVE PERFORMANCE GRADING

- Classifies asphalt properties for the given environment.
- Measure properties related to field performance:
 - Rutting
 - Fatigue Cracking
 - Low Temperature Cracking
- Measure asphalt flow properties under different:
 - Temperatures

 \mathbf{VHV}

Stages of aging

FACULTY OF ENGINEERING

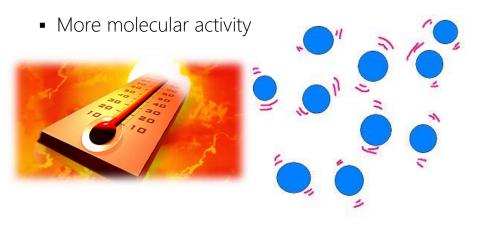
Asphalt Cement Properties

- Asphalt is composed of extremely large number of organic molecules
 - Saturates; Aromatics; Resins; Asphaltenes
- Reacts with oxygen from environment
- Oxidation process changes the concentrations of these fractions

30 Nov 2017

WHY

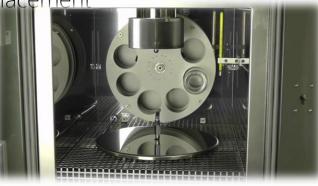
Asphalt Cement Properties


- Oxidative Aging
 - Asphalt becomes stiff with increase in asphaltenes concentration

WHY

Oxidative aging occurs faster during asphalt mix production

• High surface area to volume ratio



SIMULATING OXIDATIVE AGING

Rolling Thin Film Oven (RTFO) Test

- Hot jet air blows AC in a rotating carriage
- Short Term Production and Placement

WHY

Pressure Aging Vessel (PAV)

- High temperatures and Pressure
- Accelerated aging
- Long Term In service

2003 to 2008: HWY 655 Research

MTO investigates premature cracking

- 2003 Construct test sections with various PG grades
- 2008 Pavement condition assessment and testing of virgin and recovered AC

Section	PG True Grade
Section A	PG 65-36
Section B	PG 65-36
Section C	PG 65-36
Section D	PG 67-35
Section E	PG 66-35
Section F	PG 59-35
Section G	PG 52-34

30 Nov 2017

PAGE 7

2003 to 2008: HWY 655 Research Findings

Tank AC - Laboratory Aged Correlation (r²) to Test Method **Property Measured** Transverse Cracking PG Grading 0.001 Low Temperature Grade Recovered AC - Field Aged **ExBBR** Grade Loss 0.55 Correlation (r²) to DENT Ductility 0.17 Test Method Property Measured Transverse Cracking PG Grading 0.81 Low Temperature Grade PG Grading properties relate to cracking ExBBR Grade Loss 0.83 performance, if lab aging can match field aging. DENT Ductility 0.39

Huber et al., 2012

WHY

2016: RECOVERED ASPHALT CEMENT SPECIFICATION

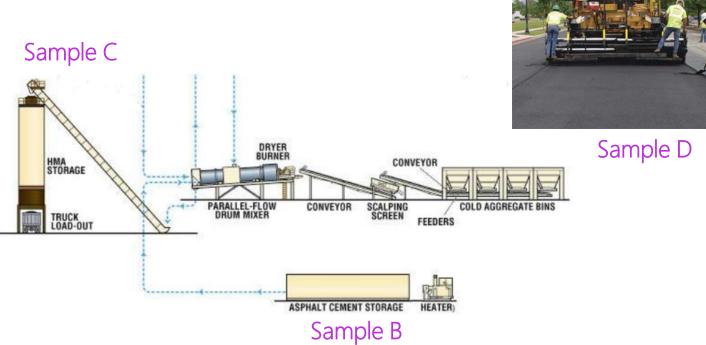
Why Recovered AC Specification?

- Correct AC is used
- Promote responsible use of Reclaimed Asphalt Pavement (RAP)
- AC is not excessively aged during production

Challenges with Recovered AC Specification

- Physical properties of AC can be affected by solvent extraction
- Testing variability between labs is high
- Experience level of labs AC recovery process

WHY


RESEARCH OBJECTIVES

- 1. Compare chemical and physical properties of laboratory- and field-aged asphalt
 - RTFO
 - RTFO + 20hr PAV
 - RTFO + 40hr PAV (MTO LS 228)
- 2. Evaluate testing variability for recovered AC properties
- 3. Evaluate plant produced mixes by performance testing

WHAT

MATERIALS SAMPLING

30 Nov 2017

HOW

MATERIALS SAMPLING

	HMA Mix Class	PG Grade	RAP Content	Owner Agency	Specification Year
1	HL1	70-28	0	Region of York	2016
2	12.5FC2	70-28	15	МТО	2016
3	12.5	58-34	15	МТО	2016
4	12.5	58-34	0	МТО	2016
5	12.5FC2	70-28	15	МТО	2014
6	12.5	58-28	0	Region of Waterloo	2017
7	12.5FC2	64-28	0	МТО	2016
8	12.5FC1	58-34	0	МТО	2016

HOW

MATERIALS SAMPLING

	Sample Type	Quantity
Sample A	1-L of AC – Supplier Terminal	24
Sample B	1-L of HMA Plant Tank AC	24
Sample C (RAP)	For RAP Mix - Bags of RAP	25
Sample C	Boxes of Plant Mix	43
Sample D	Boxes of Site Mix	17
Sample D (Cores)	6 inch Cores	12

Sample Storage

HOW

MATERIALS TESTING – PHASE I

Object #1 – Laboratory Aging vs. Field Aging

- Asphalt cement properties
- Carbonyl Index
- SARA analysis

Objective #2 – Testing Variability

- Interlaboratory correlation
- CCIL certified PGAC testing labs

HOW

MATERIALS TESTING – PHASE II

Objective #3: Performance Testing

Asphalt Mix Performance Tester (AMPT)

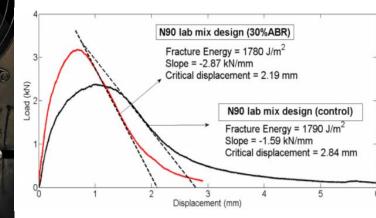
- Performance prediction of rutting
- Flow Number

AMPT Set Up

MATERIALS TESTING – PHASE II

Objective #3: Performance Testing

Illinois Flexibility Index Test (I-FIT)


Fracture Energy

Flexibility Index

Test temperature: 25°C

Fatigue Cracking Performance

Typical Results adopted form: Imad Al-Qadi, David Lippert, Hasan Ozer, and Marshall Thompson,

HOW

STUDY TIMELINE

	Activity	2016		2017		2018		2019					
		W	S	F	W	S	F	W	S	F	W	S	F
1	Literature Review												
2	Definition of Problem												
3	Objectives and Hypothesis definition												
4	Engage instrustry for study participation												
5	Materials Sampling												
6	Engage testing labs for for mateiral testing												
7	Phase I Testing												
8	Phase I Technical Report												
9	Phase II Testing												
10	Phase II Technical Report												

Completed In Progress Not Started

W = Winter Term

S = Spring Term F = Fall Term

ACKNOWLEDGEMENTS

amma.wakefield@uwaterloo.ca

