

Asphalt Institute DSR-PAV TF Outcomes & Recommendation

June 18, 2019

Pavel Kriz (Imperial Oil/ExxonMobil)

Gerry Reinke (Mathy)

Mike Anderson (Asphalt Institute)

Background & Case for Action

DSR-PAV is (after DTT) the most variable test SuperPave™

Background & Case for Action

High test variability = poor performance discrimination

Observation

Background & Case for Action

 DSR-PAV cannot discriminate poor performing binders, namely phase instable binders exhibiting high rates of cracking.

TF Objectives

- Modify T315 test protocol to reduce the test variability to acceptable level
- 2. Review scientific validity of DSR-PAV parameter $|G^*|\sin\delta$ to assess binder performance
- Review ability of DSR-PAV test to discriminate poor performers

TF Approaches

- Two round robins conducted
 - Stage 1 thermal equilibrium time
 - Stage 2 optimal plate size & strain level
- 2. $|G^*|\sin \delta$ was analyzed for scientific validity

 Ability of DSR-PAV parameter to discriminate poor performers was tested on 40 binders covering wide range of properties & compositions

Findings 1: Test Setup

- 25mm@0.1% strain test improved inter-lab repeatability
- When all labs were considered, data were more dispersed
- Test setup improvements are not viable

Phase Angle Discriminates Properties

Findings 2: Science Behind DSR-PAV

- Limiting $|G^*|\sin \delta$ (= G") to a maximum limit is benefiting low phase angle, i.e. **brittle** binders
- High quality ductile binders with high phase angle are disadvantaged.

Two binders, same complex modulus, different phase angle

Findings 3: DSR-PAV vs. Binder Performance

- Phase instability is demonstrated in more negative delta Tc, higher aging index & lower phase angle
- These parameters are directly correlated to performance as they represent aging & relaxation rates; critical parameters when cracking is considered
- $|G^*|\sin\delta$ parameter was found not to correlate with any of these parameters, in contrary all samples passed $|G^*|\sin\delta$ limit of 5000 kPa

Phase Angle vs. Aging Rate

Phase Angle vs. delta Tc (relaxation)

DSR-PAV TF Recommendations

- Do not alter current AASHTO T315 test protocol
- Specify a parameter at intermediate temperature other than $|G^*|\sin\delta$.
- Support phase angle minimum limit at constant complex modulus value to replace $|G^*|\sin \delta$.
 - This approach utilizes correct science
 - Discriminates poor performers
 - Is practical uses existing test protocol, labs are familiar with testing & historical data for comparison & validation exist. Best "speed to market" vs. other proposals

Al TAC Recommendation

Al TAC supports changes to AASHTO M320 and M332 (S-grade) to allow binders with DSR-PAV $|G^*|\sin\delta$ parameter between 5001 - 6000 kPa (as for H, V, E grades), if their phase angle at the intermediate PG temperature is higher than 42 degrees to rectify an impact of a highly variable DSR-PAV test.

Al TAC supports industry efforts to replace $|G^*|\sin\delta$ parameter with a more repeatable and scientifically correct parameter

Appendix

Supporting Data Objective 1

Thermal Equilibrium

1. Thermal Equilibrium is not a significant factor in DSR-PAV variability, however DSR manufacturers should further research it

Thermal Equilibrium

1. Thermal Equilibrium is not a significant factor in DSR-PAV variability, however DSR manufacturers should further research it

Thermal Equilibrium

1. Thermal Equilibrium is not a significant factor in DSR-PAV variability, however DSR manufacturers should further research it

Supporting Data Objective 2

Complex, Storage & Loss Moduli

$$\omega = \frac{2\pi}{T} = 2\pi f$$
 (analogous to $\dot{\gamma}$)

$$\sigma = \sigma_0 \sin(\omega t + \delta)$$

$$\sigma = \sigma_0 \cos \delta \sin \omega t + \sigma_0 \sin \delta \cos \omega t$$

$$\sigma \text{ in phase with } \gamma \qquad \sigma \text{ out of phase with } \gamma$$

$$\sigma = \gamma_0 \left[\left(\frac{\sigma_0}{\gamma_0} \right) \cos \delta \sin \omega t + \left(\frac{\sigma_0}{\gamma_0} \right) \sin \delta \cos \omega t \right]$$

$$G' \qquad G''$$

Representation in Complex Plane

 $(\sigma \text{ out of phase } \gamma)$ viscous

 $(\sigma \text{ in phase with } \gamma)$

$$\mathbf{G}^* = G' + iG''$$

$$|\mathbf{G}^*| = \sqrt{G'^2 + G''^2} = \frac{\sigma_0}{\gamma_0}$$

$$\tan \delta = G''/G'$$

symbol	modulus	energy	response
G'	storage	stored	elastic
$G^{\prime\prime}$	loss	dissipated	viscous

Science Behind DSR-PAV

$$m{G}^* = G' + iG''$$
 $|m{G}^*| = \sqrt{G'^2 + G''^2} = rac{\sigma_0}{\gamma_0}$
 $an \delta = G''/G'$

$$|\boldsymbol{G}^*| \cdot \sin \boldsymbol{\delta} = |\boldsymbol{G}^*| \frac{G''}{|\boldsymbol{G}^*|} = G''$$

high phase angle = ductile

low phase angle = brittle

high phase angle = ductile low phase angle = brittle

DSR-PAV can not capture fundamental differences

- Two asphalts (PG 64 & PG 46) were oxidized to variety of products ranging from 1 PG stiffer paving grade to roofing coating grades
- Phase angle offers clear differentiation between these binders

