BMD and Field Validation

Thomas Harman

Senior Research Engineer

AT AUBURN UNIVERSITY

Innovation is Disruptive

CAUTION CHANGE AHEAD

What do these systems have in common?

Imperfection should never stall implementation.

You can still drink from a chipped cup.

Paul Mack New York State - Retired

Superpave Mix Design Superpave Series No. 2 (SP-2)

Performance-based Binder Purchase Specification

Consensus Aggregate Properties

Design Aggregate Structure

Volumetric-based Design Binder Content

Evaluation of Moisture Sensitivity

A Simple Performance Test

"Asphalt mix design using performance tests on appropriately conditioned specimens that address multiple modes of distress taking into consideration mix aging, traffic, climate and location within the pavement structure."

Balanced Mixed Design BMD

(circa 2015)

The Tenants of Balance Mix Philosophy

- The Goal is to design, produce, and place an economical, resource-responsible, long-life asphalt pavement that balances risk between agency-buyer and contractor-seller.
- We understand the various distress mechanisms in asphalt pavements.
- We believe laboratory performance tests can effectively assess binder and mix resistance to the various distresses.
- There can be a juxtaposition between designing mix resistance to two or more distresses, necessitating a balanced approach.

Volumetric-only mix design is not fully capable of dealing with present-day mixes

Pavement Condition Rating

Original BMD Approaches (circa 2015)

Approaches

Use different

mix components

or proportions

Add anti-strip agents

(e.g., liquid anti-strip,

hydrated lime)

Repeat

Repeat

- NO 🔶

Figure 4. Graphical Illustration of the Performance Design Approach (Approach D)

With the current volumetric mix design system...

We do not have the tools needed to optimize these materials both for performance and sustainability.

BMD Candidate Performance Tests

- 6 Candidate Performance Tests
- Equipment \$20k to \$120k

6

10

Fatigue Cracking

• 10 Candidate Performance Tests

• Equipment \$10k to \$180k

Moisture Damage

- AASHTO T 283, Modified Lottman
- Equipment ~\$10k

Other Performance Considerations

- AASHTO TP 108, Toughness Cantabro
- Equipment ~\$10k

How valid is the field validation?

How sensitive?

Does it pick up on modifiers/fibers?

Cracking

CT_{Index} appears insensitive to polymer modification IDEAL-CT Results of Alabama Mixtures at 25°C

RESOU

Fan Yin, Ph.D., P.E. Randy West, Ph.D., P.E. **National Center for Asphalt Technology**

FAIL

Establishing Criterion

Easy to Set Up

Easy to Run

PASS Easy to Analyze

A few of the proposed tests are pulling ahead...

BMD Performance Direction...

Rutting

APA or HWT | IDEAL-RT
Equipment \$46k to \$120k

Fatigue Cracking

- IDEAL-CT or I-FIT
- Equipment \$14k to \$24k

Moisture Damage (HWTT)

- AASHTO T 283, Modified Lottman
- Equipment ~\$10k

Where are we today with BMD Method?

- ✓ Appears the easiest from an Agency perspective.
- ✓ Just adds performance testing to Superpave.
- ✓ Superpave volumetrics are still required.
- \checkmark No reduction in consensus properties.
- ✓ Allows current AQCs for QA.

Why BMD Method A?

Other Considerations

Method A

- Increased Cost and Time
- Iterative Mix Design with limited flexibility
- Restricts innovation
- Sustainability:
 - Limits local aggregate
 - Limits RAP and other recycled materials
 - Increases GWP of EPDs

Anticipated Benefits

Improve Performance

Enable Innovation

Optimize Cost

Sustainable

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

The Who – The Critical Role of Champions

80/20 Rule

10% more is only 4 hours a week

Have a Plan

S.M.A.R.T. Goals

Use your Resources

You are not alone

Challenge

"Whenever enemies have the ability to attack the innovator, they do so with the passion of partisans, while the others defend them sluggishly so that the innovator and their party alike are vulnerable."

-Niccolo Machiavelli, The Prince (1513)

CAPRI – What are you waiting for?

 The Consortium for Asphalt Pavement Research & Implementation

Guide for Implementing BMD Spec's

• Guide & 1-day Workshop

National Center for Asphalt Technology

AT AUBURN UNIVERSITY

Field Validation

Guidelines and Recommendations for Field Validation of Test Criteria for Balanced Mixture Design (BMD) Implementation

Develop guidelines and recommendations that Agencies can follow to build test sections for establishing valid relationships between BMD test results and field performance and to ensure that appropriate specification criteria are developed.

Research Team

Tom Harman

Fan Yin

Carolina Rodezno

Nam Tran

Project Oversight Group

- Jason Blomberg, Missouri DOT
- Andrew Brooks, C.W. Matthews
- Jeff Kern, Champaign Asphalt
- Zane Hartzog, Alabama DOT
- Tyler Wollmuth, North Dakota DOT

The Flow of the Guide

1 Advantages, Disadvantages, and Limitations of Test Section Approaches								
Advantages	Open-Road est Section	Closed Test Track	Accelerated Loading Simulator	Agency Pavement Management Data				
Real-world Traffic				\checkmark				
Real-world Environmental Conditions	\checkmark			√				
Long-Term Data Collection				✓				
Cost Effectiveness	√	√		✓				
Accelerated Testing		√	✓					
Controlled Environment		✓	√					
			▼					
Comprenensive Data	¥	v	v					
Disadvantages	1¢							
Slow Data Accumulation	*	4		*				
Limited Control	×	×	×	×				
Spatial Variability	×			×				
Limited Representation of Real-World		×	×					
Conditions								
Limited Flexibility		×	×	×				
Complexity and Cost			×	,				
Granularity of Data				×				
Data Accuracy				×				

2 Types of Distresses Evaluated in Field Sites

←Rutting

\leftarrow Cracking

Туре	Mode				
Load related	 Top-down cracking 				
LUdu-Telateu	 Bottom-up fatigue cracking 				
Environmental	 Thermal cracking (Transverse) 				
Environmental	 Block cracking 				
Deflection	 Asphalt over concrete 				
Kenection	 Asphalt over asphalt 				

← Moisture Damage

2 Types of Distresses Evaluated in Field Sites Table 3. Summary of Recommended Approaches

Type of Distress	Targeted Layer	Construction	Design Considerations	Additional Items
Rutting	Surface Layer	Overlay, or Mill & Fill	Lower Layers have High Rut Resistance	Avoid intersections
Top-down Cracking	Surface Layer (e.g., 1.5-inches)	New or Reconstruction with a fatigue-resistance intermediate layer	Consider designing for a short design life	Resource: NCAT 2015-2020 Test Track
Bottom-up Cracking	Sufficient tensile strains in the bottom layer	New or Reconstruction	Considerably thinner than needed	Resource: NCAT Additive Group 2021
Thermal Cracking	Surface Layer	Overlay, or Mill & Fill		Resource: MnROAD- NCAT Cracking Group 2016-2022
Reflective Cracking	Surface Layer	Artificial Cracks (sand / no sand options)		Resource: MnROAD- NCAT Reflective Cracking Challenge
Moisture Susceptibility	Surface layer	APT Facility	AASHTO T283 or HWTT	Resource: List of six proposed research tasks

NCAT Test Track Reports

MnROAD

National Center for Asphalt Technology NCAT AT AUBURN UNIVERSITY

3 Range of Mixtures and Materials in the Field Validation Effort

Table 4. Common Mix Design Strategies to Improve Performance

Rutting
Resistance• Adjust aggregate
gradation• In
co• Use a stiffer asphalt
binder• Lo
mail• Polymer modification• Use

- Lower asphalt binder content
- Increase recycled materials content
- Add fiber additives

Cracking Resistance

- Increase asphalt binder content
- Lower recycled materials content (*)
- Use a softer (better quality) asphalt binder
- Polymer modification (in most cases)
- Add a rejuvenator

Moisture Resistance

- Add an anti-strip agent
- Change binder source
- Change aggregate type

(*) – Crack-resistant mixes can be developed with high recycled material content.

3 Range of Mixtures and Materials in the Field Validation Effort

Figure 8. Example of Performance Diagram to Select Asphalt Mixtures for Field Validation Experiment.

4 Number of Test Sections for a Site

¥= **

Table 5. Example Field Validation Experimental Matrix with 6 Test Sections

	Cracking Resistance					
Rutting Resistance	Low	Medium	High			
Low			2			
Medium	3		(4)			
High	5	6				

Figure 9. **Hypothetical** Laboratory-to-field **Correlation Results** from a Validation Experiment; (a) **Rutting Correlation** Results, (b) Cracking **Correlation Results**

Figure 9. Hypothetical Laboratory-to-field **Correlation Results** from a Validation Experiment; (a) **Rutting Correlation** Results, (b) Cracking **Correlation Results**

5 Length of Test Sections

Considerations

- ✓ Type of Test Section
- Meaningful Pavement Condition Monitoring
- ✓ Transition/Buffer Zone between sections
- ✓ Sampling of Materials
- ✓ Number of BMD Replicates
- ✓ Variability Reduction
- ✓ Traffic and Load Considerations
- Budget and Resource Constraints
- ✓ Statistical Significance

5 Length of Test Sections Labeling | GPS Coordinates

5 Length of Test Sections Sampling of Materials, Tables 6 & 7

ĺ	

	COV (3 Replicates)				No. Replicates (Pop. COV 15		
Sample Size, n	10%	15%	20%	Sample Size, n	3	4	5
3	16%	20%	24%	3	20%	7%	6%
4	12%	14%	15%	4	14%	6%	4%
5	9%	10%	11%	5	10%	5%	3%
6	7%	8%	9%	6	8%	4%	2%
7	6%	7%	7%	7	7%	3%	2%
8	5%	6%	6%	8	6%	3%	1%
9	5%	5%	5%	9	5%	3%	1%

Where: The |Mean – Ave|/SEM yields the likelihood of accepting a result statistically outside the true mean of the field test section.

5 Length of Test Sections EXAMPLE

- a. State DOT identifies *top-down cracking* and *rutting* as key performance challenges
- b. Laboratory assessment of several of the BMD tests
 - ✓ Selected the IDEAL-CT and the HWTT
- c. Shadow testing of Superpave mixes provides a range of typical test results
- d. Based on the Guidelines and Recommendations for Field Validation of Test Criteria for Balanced Mixture Design (BMD) Implementation, they have adopted Table 4.1 Field Validation Experimental Matrix with 6 Test Sections to design their open-road experiment
- e. The state DOT has established an Agency-Industry taskforce to identify challenges and address concerns in constructing the sections
 - ✓ NCAT provided a 1-day BMD workshop to kick off the taskforce

5 Length of Test Sections

- Asphalt Production Facility, 250 TPH
- Mill and Fill, 1.5-inch surface mix (6 JMF) \geq
- 18-ton haul trucks
- Transition/Buffer Zone = 3 trucks / 54 tons
- BMD Test Section = 600 tons / 1.0 miles \geq
- > 3 sections per day over 2 days
- ➤ 4 replicates for each BMD test
- 5 samples per test section
- Sublot of 126 tons (600 tons / 5 samples) or 7 trucks

6 Roadway Geometrics to Avoid

Intersections
Horizontal Grades
Curves
Variable Traffic Speeds

7 Sampling, Conditioning, and Testing Plan

Guide on Asphalt Mixture Specimen Fabrication for BMD Performance Testing

Nathan Moore & Adam Taylor National Center for Asshalt Technology (NCAT) at Auburn University 1. Sampling Methods

- 2. Representativeness
- 3. Sample Storage & Reheating (Lag-/Dwell-Time)
 - . Fabrication Resource
- 5. Sample Conditioning
- 6. Test Procedures
- 7. In-place Density
- 8. Additional Information
- 9. Conventional Testing
- 10. QA
- 11. Split Samples

8 Pavement Performance Monitoring, Traffic, and Climate Data Collection

• Pavement Performance, Traffic, and Climate Data Collection

- Protocols
 - Training and Certification
 - Equipment and Tools
 - Data Collection Procedures
 - Data Management and Storage
 - Data Quality Control

AT AUBURN UNIVERSITY

10 Data Analysis and Application of the Results in Specification

✓ Detailed Examples from Numerous Studies...

10 Data Analysis and Application of the Results in **Specification**

- Useful Tools for Analysis: ✓ Video of constructing a scatterplot is a simple process in Microsoft Excel
 - ✓ Video on linear regressions and R²
 - \checkmark Video of R² and *its limitations* **Includes RSE**

AT AUBURN UNIVERSITY

National Center for

FHWA Sustainability Experiment

- In general, R² of 0.60 or higher
 V = 140.25 or 127.2x P² = 0.57
 - Y = 140.25 e^{-127.2x}, R² = 0.57
- In addition, assess:
 - Residual Standard Error (RSE)
 - RSE = 28.0

- Note: Data point with high-residual (x=0.56, y=136.0)
- Several potential or combination of reasons for this point to have a high residual:
 - a) Variable subgrade support under the ALF sections
 - b) Age of section at time of loading
 - c) Sampling bias
 - d) Relationship between CT_{Index} & measured performance
- For illustrative purposes, let's assume we determine this data point to be suspect and remove it from the analysis as such:

FHWA Sustainability Experiment

11 Establishing Criteria

- 1. Benchmarking
- 2. Shadow Projects
- 3. Data Analysis
- 4. Consistency
- 5. Risk Assessment
- 6. Adaptability
- 7. Communication with Contractors
- 8. Documentation
- 9. Sharing Regionally & Nationally

Good or better

E.g., A Journey to Performance

Sandy, the State DOT Bituminous Engineer, has taken on the challenge to implement BMD to address performance issues and provide a sustainable pathway forward.

			State		Low-
PCI Score	Condition	Interstate	Route	Region/District	Volume
96 - 100	Very Good	13%	13%	5%	2%
76 – 95	Good	53%	44%	50%	59%
46 – 75	Fair	32%	31%	28%	27%
21 – 45	Poor	2%	12%	16%	9%
0 - 20	Very Poor	0%	0%	1%	3%
Ten ye 66% Good o	ars ago rated or better				day rate

PCI Calculations

PCI Indexes	Statewide Average	Minimum Value	
RUT	91.1	52	Rutting Resistance
FAT	73.7	40	Fatigue Cracking Resistance
RAV	92.7	72	Related to Moisture Susceptibility

Key Composite Indexes

\$150M State Paving Program

Breakdown:

- ✤ 10% reconstruction
- ✤ 41% asphalt overlays
- ✤ 49% pavement preservation

Last year's surface mixes by traffic level:

- ✤ 10% Low
- ✤ 60% Medium
- ✤ 30% High

Traffic	NMAS	Gradation	Ndesign	VMA	VFA	P0.075/Pbe	Allowable RAP
Low	9.5mm	Fine	50	15.0	70 to 80	0.6 to 1.2	25 to 40%
Medium	12.5mm	Fine	75	14.0	65 to 78	0.6 to 1.2	20 to 30%
High	12.5mm	Coarse	100	14.0	65 to 75	0.8 to 1.6	15 to 25%

Sandy's review of the information, along with conversations with the contractor community, provides the following insights:

- Lower PCI's are being driven by *fatigue cracking*.
- The state *does not have a rutting issue*.
- The majority of the paving program uses *12.5mm fine-graded mixes*.
- Contractors typically design mixes on the *lower allowable RAP range*, citing challenges meeting all the Superpave volumetric criteria.
- The State DOT would like to *increase the RAP* content for a more sustainable product.
- The Contractors are also interested in *higher-RAP* as they explore developing environmental product declarations (*EPD*).
- Sandy is developing a BMD field validation experiment to establish criteria.

Benchmarking

Traffic	Parameter	HWTT- SIP	HWTT Rut Depth 10k passes	IDEAL-CT (CT _{Index})	DCT Fracture Energy (J/M ²)
	Mixes, n	22			
Medium	Average, Ӯ	13,700	5mm	66.5	481.3
	COV	23%	19%	18%	22%
	Mixes, <i>n</i>	13			
High	Average, Ӯ	16,200	4mm	59.5	422.7
	COV	15%	17%	19%	21%

APPENDIX Full-scale Road Test Sections & APTs

- 1920 Bates Road, IL
- 1952 WASHO Test Road, ID
- 1958 AASHO Road Test, IL
- 1990 LTPP, USA-Canada
- 1993 MnROAD
- 1995 WesTrack, NV
- 2000 NCAT Test Track, AL
- 2012 NCAT Pavement Preservation Studies, AL
- 2015 MnROAD PP Studies
- Accelerated Pavement Test Facilities

Asphalt AI Tool

HeyNAPA.com

- Built with the GPT4 software
- Only draws from vetted asphalt research and publications
 - NAPA
 - FHWA
 - NCAT
- Gives citations with responses

Questions?

FOR ANY INQUIRIES ABOUT OAPC, PLEASE E-MAIL: INFO@ONASPHALT.ORG

@

VISIT OUR REFRESHED WEBSITE TO LEARN MORE: <u>WWW.ONASPHALT.ORG</u>